GCE

Mathematics

Advanced GCE
Unit 4730: Mechanics 3

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1	$\begin{aligned} & {[5 \cos \theta-4=0]} \\ & \cos \theta=0.8 \\ & {[I=0.3(5 \sin \theta-0) \text { or } \sin \theta=I \div(0.3 \times 5)]} \\ & I=0.9 \end{aligned}$	M1 A1 M1 A1 [4]	For using $v_{x}-u_{x}=0$ or for a triangle sketched with sides $I / 0.3,4$ and 5 with angles θ and 90° opposite I / m and 5 respectively. AG For using I $=m(\Delta v)$ in ' y ' direction or $I=\sqrt{\left((0.3 \times 5)^{2}-(0.3 \times 4)^{2}\right)} \quad$ M1

2	$(1.8+3.2) R_{B}=(3.2+0.9) \times 300+1.6 \times 400$ Force exerted on $A B$ is 374 N Force exerted on $A C$ is 326 N	M1 A1 A1 B1 [4]	For taking moments about C for the whole for M1 need 3 terms; allow 1 sign error and/or 1 length error and/or still including sin/cos or for taking moments about B for whole $(1.8+3.2) R_{C}=(1.8+1.6) \times 400+0.9 \times 300$ giving force on $A C$ first: M1A1A1A1
ii	$\begin{aligned} & 0.9 \times 300+1.2 T=1.8 \times 374 \\ & \text { Tension is } 336 \mathrm{~N} \end{aligned}$	M1 A1 A1 [3]	For taking moments about A for $A B$ for M1 need 3 terms, allow 1 sign error and/or 1 length error and/or still including sin/cos or moments about A for $A C$ $1.6 \times 400+1.2 T=3.2 \times 326$
iii	Horizontal component is 336 N to the left $[Y=374-300]$ Vertical component is 74 N downwards	B1ft M1 A1ft [3]	For resolving forces on $A B$ vertically

Give credit for part (ii) done on the way to part (i) if not contradicted in (ii).

3	$\begin{aligned} & 0.25(\mathrm{~d} v / \mathrm{d} t)=-0.2 v^{2} \\ & 0.25 \int v^{-2} d v=-0.2 t(+C) \\ & -v^{-1} / 4=-t / 5+C \\ & {[1 / 4 v=t / 5+1 / 20]} \\ & v=\frac{5}{4 t+1} \text { oe } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { dep } \\ \text { M1 } \\ \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[5]} \end{gathered}$	For using Newton's second law with $a=\mathrm{d} v / \mathrm{d} t$. Allow sign error and/or omitting mass For separating variables and attempting to integrate (ie get v^{-1} and t). For using $v(0)=5$ to obtain C
ii	$x=(5 / 4) \ln (4 t+1)(+B)$ Subst $v=0.2$ in (i) to find t Obtain $x(6)(=1.25 \ln 25$ oe (4.02359...)) Average speed is $0.671 \mathrm{~ms}^{-1}$	M1 A1 M1 M1 A1 [5]	For using $v=\mathrm{d} x / \mathrm{d} t$ and integrating Implied by $t=6$ May be written as $\frac{5}{12} \ln 5$
	Alternatively $\ln v=-0.8 x+B$ Subst $v=0.2$ in (i) to find t Obtain $x(0.2)(=1.25 \ln (5 / 0.2)$ oe (4.0239...)) Average speed is $0.671 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For using $m v(\mathrm{~d} v / \mathrm{d} x)=-0.2 v^{2}$, separating variables and integrating. Allow sign error and/or omitting mass. Implied by $t=6$ May be written as $\frac{5}{12} \ln 5$

4	$\begin{aligned} & {[-0.2 \times 2 \ddot{\theta}=0.2 g \sin \theta]} \\ & \frac{d^{2} \theta}{d t^{2}}=-4.9 \sin \theta \end{aligned}$ For small $\theta, \sin \theta \approx \theta$ and $\ddot{\theta}=-4.9 \theta$ represents SHM	M1 A1 B1 [3]	For using Newton's second law transversely. Allow sign error and/or $\sin /$ cos error and/or missing $0.2, g$ or l. AG
ii	$\theta=0.15 \cos (\sqrt{4.9} t)$ oe $t=1.04$ at first occasion $t=1.80$ at second occasion	M1 A1 A1 M1 A1 [5]	For using $\theta=A \cos (n t)$ or $A \sin (n t+\varepsilon)$. Allow sin/cos confusion for using $t_{1}+t_{2}=2 \pi / n$
iii	Angular speed is (-) $0.297 \mathrm{rads} \mathrm{s}^{-1}$ Linear speed is (-) $0.594 \mathrm{~ms}^{-1}$	M1 A1 A1ft [3]	For using $\dot{\theta}=-A n \sin (n t)$ oe. Allow sign error and/or ft from θ in (ii).

In (ii) \& (iii) allow M marks if angular displacement/speed has been confused with linear.

5	$\begin{aligned} & {[\sin \gamma=0.96 \div 1.2]} \\ & \sin \gamma=0.8 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{array}$	For using $v_{B} \sin \gamma=u_{B} \sin \beta$
ii	$\begin{aligned} & (m) 2-(m) u_{B} \cos \beta=(m) v_{B} \cos \gamma \\ & 2=v_{B}(0.6+0.28 \div 1.2) \\ & v_{B}=2.4, u_{B}=2 \end{aligned}$	M1 A1 M1 A1 A1 [5]	For using the principle of conservation of momentum. Allow sign error and/or $u_{A} \cos \alpha$ (instead of 2) for M1. allow $u_{A} \cos \alpha$ (instead of 2) for A1 For eliminating u_{B} or v_{B}. Allow with cos Or $2=0.28 u_{B}+0.72 u_{B}$
iii	$\begin{aligned} & {\left[\left(2+u_{B} \cos \beta\right) e=v_{B} \cos \gamma\right]} \\ & (2+2 \times 0.28) e=2.4 \times 0.6 \\ & e=\frac{9}{16} \text { or } 0.5625 \end{aligned}$	M1 A1ft A1 [3]	For applying Newton's exp'tal law. Allow sign error and/or $u_{A} \operatorname{Cos} \alpha$ (instead of 2) for M1. ft u_{B} and v_{B} only
iv	$\begin{aligned} & {\left[(y \text {-component })^{2}=13-4\right]} \\ & v_{A}=(y \text {-component })_{\text {before }}=3 \end{aligned}$	M1 [2]	For using $1 / 2(m) v^{2}=6.5(m)$ and $(y \text {-component })^{2}=v^{2}-2^{2}$. Allow 1 slip.

6	$\begin{aligned} & \text { PE gain }=6 \times 0.8(\sqrt{3} / 2-1 / \sqrt{2}) \\ & =2.4(\sqrt{3}-\sqrt{2}) \end{aligned} \quad \begin{array}{r} \text { EE loss }=\frac{9}{2(\pi / 10)}\left[(0.8 \pi / 4-\pi / 10)^{2}-\right. \\ \text { EE loss }=45 \pi\left[(0.2-0.1)^{2}-(0.8 \pi / 6-\pi / 10)^{2}\right] \\ =5 \pi(9 \times 0.01-0.01)=40 \pi / 100=0.4 \pi \mathrm{~J}) \end{array}$	A1 M1 A1 A1 [5]	For using PE gain $=W\left(h_{Y}-h_{X}\right)$ Shown fully, with no slips AG For using EE loss $=\lambda\left(e_{X}{ }^{2}-e_{Y}^{2}\right) / 2 l$. Allow slips for M1. Fully correct No slips in simplification AG
ii	$T=9(0.8 \pi / 6-\pi / 10) \div(\pi / 10)$ $W \sin \theta-T=6 \times \sin (\pi / 6)-90 \times(0.2 \div 6)=0$ transverse acceleration is zero $1 / 2(6 / 9.8) v^{2}=0.4 \pi-2.4(\sqrt{3}-\sqrt{2})$ Maximum speed is $1.27 \mathrm{~ms}^{-1}$	B1 M1 A1 M1 A1 A1 [6]	For attempting to show that $W \sin \theta-T=0$ at Y by subst $\theta=\pi / 6$ AG No slips For using KE gain = EE loss - PE gain at Y. Need 3 terms, allow sign errors and/or g omitted.

7	$\begin{aligned} & 1 / 2 m v^{2}=1 / 2 m 5.6^{2}-m g 0.8(1-\cos \theta) \\ & v^{2}=15.68(1+\cos \theta) \\ & T-m g \cos \theta=m v^{2} / r \\ & {[T-0.3 g \cos \theta=0.3 \times 15.68(1+\cos \theta) / 0.8]} \end{aligned}$ $\text { Tension is } 2.94(3 \cos \theta+2) \mathrm{N} \text { oe }$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { M1 } \\ \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[7]} \end{gathered}$	For using the principle of conservation of energy. Allow sign error, sin/cos; need 3 terms. AG No slips For using Newton's second law. Allow sign error and/or sin/cos and/or m omitted For substituting for v^{2}
ii	θ is 131.8° (or 2.3 rads) Accept 132° (exact) v is 2.29	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ {\left[\begin{array}{l} 3] \end{array} .\right.} \end{gathered}$	For putting $T=0$ and attempting to solve accept $\theta=\cos ^{-1}(-2 / 3)$ $\sqrt{15.68 / 3}$ exact
iii	$\begin{aligned} & {[\text { speed }=\|v \cos (180-\theta)\|}= \\ &\sqrt{15.68 / 3} \times(2 / 3)] \end{aligned}$ Speed at greatest height is $1.52 \mathrm{~ms}^{-1}$ $0.3 g H=1 / 20.3\left(5.6^{2}-1.52 . . .^{2}\right)$ Greatest height is 1.48 m	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ [4]	For using ‘speed at max. height = horiz. comp. of vel. when string becomes slack' For using the principle of conservation of energy 40/27 exact
	ALTERNATIVE for (iii) $\begin{array}{\|l} {\left[0=2.286 . .^{2} \times(1-4 / 9)-19.6 y,\right.} \\ H=0.8(1+2 / 3)+y] \\ H=1.3333 . .+0.1481 \ldots(4 / 3+4 / 27) \end{array}$ Greatest height is 1.48 m (40/27) [$1 / 2 m\left(2.286 \ldots{ }^{2}-\right.$ speed $\left.^{2}\right)=m g \times 0.1481 \ldots$ speed $^{2}=2.286$.. $^{2}-19.6 \times 0.1481 \ldots$...] or $\left[1 / 2 m\left(5.6^{2}-\right.\right.$ speed $\left.^{2}\right)=m g \times 1.481 \ldots$ speed $\left.^{2}=5.6^{2}-19.6 \times 1.481 \ldots . \quad\right]$ Speed at greatest height is $1.52 \mathrm{~ms}^{-1}$	M1 A1 M1 A1	For using $0^{2}=\dot{y}^{2}-2 g y$ and $H=0.8\{1+\cos (180-\theta)\}+y$ For using the principle of conservation of energy

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

